The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition - 2nd Edition


During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—-the first comprehensive treatment of this topic in any book.

This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression and path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for &'grave;wide'' data (p bigger than n), including multiple testing and false discovery rates.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

Author(s): Trevor Hastie   Robert Tibshirani   Jerome Friedman  

ISBN 10: 0387848576
ISBN 13: 9780387848570
Pages: 768
Find this book on Amazon

 

This books is in the following lists (1)



Related YouTube Videos (add a video)

Add the YouTube URL below and submit:

To add a YouTube video, please copy the video's URL on YouTube and submit by clicking "Add".
The URL should look something like this: https://www.youtube.com/watch?v=CXQdBuuanI8
How to copy the videos URL from YouTube

No video yet, want to add one?

Related Articles (add an article)

Add an article URL below and submit:

To add an article, please paste the article's URL and submit by clicking "Add".
Below is an example of a valid URL:
How to copy and paste a webpage URL

No article found, do you know any related to this book?

Report an error with this book